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ABSTRACT

Generalized primary/secondary flow equations and a spatial-marching

solution algorithm have beenutilize&,to develop a procedure to compute the

three-dimensional viscous flow around a submerged body in maneuver. The primary/

secondary flow equations are an approximation to the Navier-Stokes equations for

flows in which a primary flow direction can be identified. Important elements of

the approximation are a locally specified primary flow direction and a

decomposition of the secondary velocity field to identify a small velocity vector

for approximation. No approximations are introduced for pressure in this

approach. The primary/secondary flow equations are a well-posed initial-value

problem in a spatial coordinate nominally aligned with the primary flow direction

and are solved by a sequentially decoupled implicit algorithm. The procedure

provides an order to two orders-of-magnitude run time advantage over solution of

the Navier-Stokes equations. Results are presented for the flow past an

unappended submarine hull in drift at a Reynolds number of 16 million and

incidence of 20 degrees. These results are consistent with experimental

observations and provide a means to compute the complex three-dimensional viscous

flow field economically.
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1. INTRODUCTION

The flow around submerged bodies at different attitudes evokes

considerable interest in the field of hydrodynamics. Such flow fields occur

in many and varied applications. Of particular interest is the flow field

around a submarine, torpedo, or similar body in maneuver. The computation of

this flow field is important to the analysis of performance and noise

characteristics of the device.

The flow field around a submerged body in maneuver is, in general,

three-dimensional, viscous, and unsteady. The large scale unsteadiness in the

flow field is primarily due to the time-dependent motion of the maneuvering

body. The computation of this unsteady, three-dimensional, viscous flow field

with available computer resources is a formidable task. However, many portions

of a maneuver can be steady (e.g. a steady descent or climb) or quasi-steady,

and the flow field around the body can be obtained from solution of the steady

flow equations for a fixed body attitude. Several different attitudes can be

studied in this manner. The results would provide body surface pressures which

can then be used to derive the forces and moments on the body. The computation

of this quasi-steady flow field is addressed in this report.

The complexity of the flow around a submerged body in steady maneuver

presents considerable difficulties in the utilization of computational methods

to compute such flows. These difficulties arise from the three-dimensionality

of the flow field characterized by large secondary vorticity and velocity

generated that result in a flow field with diverse length scale flow

structures. Solution of the three-dimensional averaged Navier-Stokes equations

avoids making physical approximations other than those associated with

turbulence modeling. However, this approach is very costly, even with modern

supercomputers, because the accurate resolution of the complex flow structures

requires very large mesh densities. In light of this high cost of solution,

approximations have been developed which reduce the steady subsonic

Navier-Stokes equations to a form which is well-posed as an initial-value

problem in a suitable direction and could be solved by a spatial-marching

algorithm. The advantage of such an approach is that spatial-marching

algorithms can be devised which are considerably less expensive in terms of

computer resources (run time and storage) than algorithms foc the elliptic

Navier-Stokes equations. The trade-offs for this advantage are that errors are



introduced due to the approximations and the range of flow problems that can be

addressed is restricted relative to the Navier-Stokes equations because of

factors such as flow separation, stagnation points, and transonic flow

effects. Nevertheless, this approach seems well suited for a number of flows

arising in practical applications and can provide very high resolution of

three-dimensional viscous flow structures at relatively low cost. In addition,

the spatial-marching approach could provide a large number of detailed flow

calcuiations at moderate cost for use in design optimization studies.

The potential gain in economy of solution for a class of complex

three-dimensional viscous flows by utilizing a spatial-marching approach

provided ample motivation to study and establish the applicability of the

approach to compute the flow field around a submerged body in maneuver. This

study of the applicability of the spatial-marching approach to compute the flow

field around a submerged body was the primary focus of the present contract.

Three aspects were identified and comprised the study:

(a) Establishment of a framework of approximations and governing

equations suitable for the three-dimensional viscous flow around a

submerged body in maneuver. The guiding principle in this process was

that the approximations be valid considering the physics of the flow field

and the governing equations be a well-posed initial value problem

considering mathematical requirements for successful application of a

spatial-marching solution algorithm.

(b) Formulation of governing equations for efficient numerical solution.

Identification and application of efficient numerical solution procedures

to achieve the run time advantages desired.

(c) Computation of the three-dimensional viscous flow around a submerged

body to demonstrate successful completion of (a) and (b) and establish the

applicability of the approach to compute the submerged body flow field.

All three aspects were successfully addressed under the present contract.

The next section of this report describes the generalized

primary/secondary flow equations utilized as the approximate flow equations for

the submerged body flow field and the sequentially decoupled implicit algorithm

utilized to solve the equations efficiently. Application of the procedure to

compute flow around a submerged body in maneuver is also described. The third

section of the report describes results of the computations of the flow around

a submerged body in drift and compares the results with available experimental
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data. The report concludes with a description of current capability and

suggestions for future development of the capability.

2. PHYSICAL APPROXIMATIONS AND GOVERNING EQUATIONS

2.1 Overview

Two basic types of physical/mathematical approximations have been

suggested to reduce the Navier-Stokes equations to a form suitable for spatial-

marching solution. Approximations in both viscous and inviscid terms in the

Navier-Stokes equations are necessary to obtain non-elliptic (well-posed) ap-

proximate equations. The viscous approximation entails neglecting terms rep-

resenting streamwise diffusion. This approximation requires identifying a

direction in the flow field along which the approximation is made and associat-

ing the streamwise (marching) coordinate with this direction. Two types of in-

viscid approximations have been suggested: (a) an assumed form for the steam-

wise pressure gradient term, and (b) a small scalar potential approximation for

the secondary flow. Either of these 4nviscid approximations, along with the

viscous approximation, produces non-elliptic governing equations.

The inviscid approximation which assumes a given form for the streamwise

pressure gradient term has obvious roots in two-dimensional boundary layer

theory, and has been used extensively. The second type of inviscid

approximation (termed the small scalar-potential approximation) has been

investigated recently by Briley and McDonald [1]. This approximation does not

employ any approximation for pressure gradient terms and instead approximates

convective terms in the secondary flow momentum equation by neglecting the

scalar-potential component of a vector-decomposed secondary-flow velocity

field. The effect of the generated streamwise vorticity (secondary flow) on

the pressure field is retained in the streamwise pressure gradient with the

small scalar-potential approximation. This effect is usually absent in the

streamwise pressure gradient when it is assumed to be of given form.

The inviscid and viscous approximations just described should not be

confused with other equations under the general heading of 'parabolized

Navier-Stokes' equations which are not well-posed initial-value problems but

are solved iteratively by approximate well-posed spatial marching iterations.

The iterations, when converged, remove the approximation made in each of the

iterates to obtain solutions of the elliptic set of approximate flow equations.

-3-



Preliminary computations of the steady flow around a submerged body in

drift with a spatial marching procedure were completed by Govindan and Levy

[2]. These computations approximated streamwise pressure gradients in the

governing equations by setting them to zero. At this level of approximation,

the results demonstrated that the qualitative features of the three-dimensional

viscous flow around a submerged body could be computed within the context of a

spatial marching algorithm. These results provided a basis to further pursue

and refine the approach to provide quantitatively accurate computations of the

submerged body flow field, the objective of the present contract.

The first task addressed, under the present effort, was to develop the

framework of approximations and governirg equations suitable for the submerged

body flow field. Govindan, Briley, and McDonald [3,4] have recently derived

generalized primary/secondary flow equations as an approximate set of flow

equations applicable to a wide class of three-dimensional viscous flows. These

equations are an approximation of the steady Navier-Stokes equations based on

knowledge of a primary flow direction which includes the effect of surface

geometry. The primary/secondary flow equations along with the small scalar

potential approximation are a well-posed initial value problem suitable for

solution by a spatial marching algorithm. These equations were deemed to be

the preferable set of equations for computing the flow around a submerged body

in manuever for two reasons. First, Govindan, Briley and McDonald [4] in their

computations have demonstrated the quantitative accuracy that could be obtained

from the primary/secondary flow equations. Second, the choice of a potential

flow model to generate streamwise pressure gradients for the pressure

approximation is unclear and, therefore, the approximation is difficult to

use. The difficulty does not arise with the small scalar potential

approximation wherein no approximations are made for the streamwise pressure

gradient.

2.2 Primary/secondary flow equations for the submerged body flow field

The physical approximations made in the primary/secondary flow equations

are a distinguishing feature of the present approach. The present

approximations are similar in spirit to those made in two-dimensional slender

channel theory, and to a lesser degree in two- and three-dimensional boundary

layers. In these latter approaches, one velocity component (the surface- or

coordinate-normal component) is assumed to be small. In applications such
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as flow about a submerged body, however, large steamwise vorticity is

generated. The velocity components associated with this streamwise vorticity

are known to be large (of the order of the streamwise velocity) and cannot be

neglected. In the present approach, a small velocity vector is identified

which provides a basis for approximating flows with large streamwise vorticity

and secondary velocity.

Two features of the primary/secondary flow equations central to

identifying a small velocity component for approximation are a locally

specified primary-flow direction and a decomposition of the secondary velocity

field. The local flow field velocity vector is expressed as a primary flow

component in the primary-flow direction and a secondary flow component normal

to this direction. The secondary velocity component is decomposed into

components defined from a scalar-potential and a vector-potential. The vector

potential defines the streamwise vorticity and the large secondary velocity

component associated with the streamwise vorticity. The remaining

scalar-potential velocity component contribution can be assumed to be small in

the transverse momentum equations, but not otherwise neglected. This small

scalar-potential approximation along with the viscous approximation neglecting

streamwise diffusion is sufficient to establish a well-posed initial value

problem, which can be solved far more economically than the Navier-Stokes

equations. No approximations are introduced for pressure in this approach.

Figure 1 illustrates elements of the velocity decomposition and

approximation. Figure la is a schematic showing a local primary flow

direction and a plane normal to the direction (local normal plane). The flow

field velocity vector is represented as a primary flow (streamwise) velocity

component u in the primary flow direction and a secondary flow velocity

vector V in the local normal plane. The primary flow direction does not, in

general, coincide with the marching coordinate direction and correspondingly

the local normal plane does not coincide with the transverse coordinate plane

that is normal to the marching coordinate. The secondary flow velocity

vector V is decomposed (Figure lb) in the local normal plane into a component

from a scalar-potential (Vt) and a component from a vector potential

(V.). The vector potential component V is associated with streamwise

vorticity and is expected to he large. The scalar potential component V is

the difference between the total velocity component V and V, and is expected
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to be small. The small scalar-potential approximation neglects the effects of

V in transverse momentum equations. This component is not neglected in the

continuity equation. A physical interpretation of the approximation for a

general three-dimensional viscous flow field is not easy. However, the

approximate equations can be reduced to two-dimensional boundary layer

and slender channel theory equations. In this boundary layer context, the
+

scalar-potential component V corresponds to the small velocity component

normal to the boundary.

An important element in the application of the primary/secondary flow

equations to compute three-dimensional viscous flow is to identify a local

primary flow direction. Potential flow streamlines conform to the shape of

boundaries and are a suitable choice for the primary flow direction for many

flow problems. In the case of the submerged body flow field, the primary flow

direction was chosen to be direction of potential flow streamlines around the

body at zero incidence. This potential flow was calculated using slender body

theory (5].

Validation of the spatial-marching approach requires comparison of the

computation with experimental measurements and other computational results.

In Ref. [41, computed velocities for both laminar and turbulent flow in a

90-degree square bend agree very well with measurements of Taylor, Whitelaw,

and Yianneskis (6]. A comparison with a Navier-Stokes solution for a

90-degree channel bend gives excellent agreement with both pressure and

velocity [4]. In Ref. [7], surface pressures computed for a tip vortex flow

field are in good agreement with measurements of Gray, McMahon, Shenoy and

Hammer [8]. In the present study, the flow past an unappended submarine hull

in drift has been computed at a Reynolds number of 16 million and incidence of

20 degrees.

The remainder of this section contains a mathematical description of the

generalized primary/secondary flow equations and the small scalar-potential

approximation. Details of the derivation of these equations can be found in

Ref. (3]. In the summary that follows, ik denotes the unit vector basis

associated with the orthogonal reference line coordinate system used to

describe the equations. The vector il is aligned with the marching

coordinate direction (x 1) and vectors i and i3 lie in the transverse

coordinate plane. The vector basis ek and the reciprocal basis ek are



defined to identify the local primary flow direction and the local normal

plane for the purpose of approximating flow equations. The vector eI is

-2 -3
aligned with the primary flow direction and the vectors e and e lie in the

-k
local normal plane [Figure l.a.J. The vectors e and ek are related and can

be written in terms of their components in the coordinate system ik as

ekez = ekmem£= (2.1)

The flow field velocity vector is denoted by U,

= uIi 1 + u 2i 2 + u 3i 3 = upe + ve + we3 (2.2)

The velocity component Up is associated with the primary flow direction and

components v and w with the secondary flow field. The secondary flow velocity

vector V can be defined as

V= ve 2 + we 3  (2.3)

The secondary flow velocity components are decomposed into scalar potential

(v, w ) and vector potential components (v,,, w)

v =v + Vp

= w + wp (2.4)

The scalar potential velocity components can be defined in terms of a scalar

potential (4) and the vector potential components in terms of a vector

potential (4).
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s =(e JV -ej)ie

Z - 2,3 (no sum) (2.5)

Vsx i1  (PeJv*-ej)iz

where p is density and V. is the surface operator defined as

V =V -V
s p

(2.6)

with V = il(ii-V)

All variables in the flow equations are assumed to be nondimensional, having

been normalized by a suitable combination of reference quantities. The

primary/secondary flow equations are written for the dependent variables,

streamwise velocity Up, scalar potential *, vector potential *, vorticity SI,
pressure p, total enthalpy E, and density p.

Scalar potential equation (continuity):

V .(PV €) + V -(pelJ Ve.)il + V-(pe 1u )ik = 0 (2.7)s s p j pk

Streaz-ise momentum equation:

PU-Vu - PU-(U'V)e i + el-Vp + T- .VXDVX = o (2.8)

where Re is the Reynolds number defined from reference quantities, u the

normalized coefficient of molecular viscosity, and V is an approximation to V

in which second derivatives along the il coordinate have been neglected.

Vector potential equation (definition of vorticity):

V X (V X4ij) - Qi I = 0 (2.9)
sO s



i1
VortJc:ty transport equation:

p k E -x pup 3e~k
h---I + Vs "S + Vs X  ( e  1iE + (Vs-)xh X (V'ek)i

(2.10)

+ (V PV)x[V efk(V-e)]i + I IV xek e kV xW l = 0
s s k Z Re s k s

where % and D£ are defined in [3] and V = 8V + V . The parameter B takes on

values of 0 or 1, 8 = 0 identifies the small scalar potential approximation.

Pressure equation:

V s - (e£kek-Vp)i + V s e (ekF): = 0 £ = 2,3 (no sum) (2.11)

Fk is a combination of terms from transverse momentum equations and is defined

in [3]. ihe secondary flow velocity vector, V, is written as V = OV + V in

Fk and B = 0 identifies the small scalar potential approximation.

Energy equation:

oU'VE - (RePr) - I V.KV E - (y-1) MRe-' [Ui -PU-V XUV x q
s r 5 5

(2.12)

- Pr 1 V sKV s Iq1 2 /21 =0

where q = u e + (Bv + v )e 2 + (aw + w,)e 3

4 is the dissipation function, K the coefficient of thermal conductivity, Pr

the Prandtl number, and Mr the reference Mach number. Simpler forms of the

energy equation that can be used at low and moderate Mach numbers are described

in [31.

State equation:

Sp EIy - (y-1 )o q /2y (2.13)
r-



Equations (2.7) to (2.13), along with the definition of the velocity

decorposition (2.5), are the complete set of primary/secondary flow equations.

The small scalar potential approximation (0 = 0) makes these equations a

well-posed initial value problem along the streamwise coordinate (x i).

3. SOLUTION OF PRIMARY/SECONDARY FLOW EQUATIONS

The choice of a solution algorithm for the primary/secondary flow

equations must exploit the small scalar potential approximation for economy.

The potential for economy lies in the initial-value nature of the primary/

secondary flow equations and the ability to solve such a problem by a spatial

marching scheme. Such a scheme will be developed in this section for the

primary/secondary flow equations.

An evolution equation can be written in the form

A -L + D( ) 0 (3.1)
at

where 0 is a vector of dependent variables, t is a time-like variable (e.g.

streamwise coordinate), A is a matrix of coefficients, and D is a multi-

dimensional differential operator. Efficient, implicit, noniterative marching

schemes have been developed to solve equations of the type (3.1) when the

matrix A is well-conditioned. An example of such a scheme is the LBI scheme

[91 for nonlinear equations and is based on the Douglas-Gunn ADI scheme.

However, the matrix A for the primary/secondary flow equations is singular due

to the lack of streamwise derivatives in some of the governing equations. This

is also true when the same equations are written in terms of primitive

variables [3]. Coupled implicit schemes such as the LBI scheme require

iteration when A is singular. This penalty in economy, due to iteration of a

fully coupled system at each step, is avoided in the present sequentially

decoupled -gorithm.

The problem with the singularity of the coefficient matrix of the

streamwise derivative is circumvented by decoupling the individual equations of

the system without a streamwise derivative and solving them separately at each

streamwise step of a spatial marching scheme for the remaining equations.

However, any severe penalty in economy due to loss of stability in the overall

scheme from the decoupling would be unacceptable. The present sequentially
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decoupled implicit algorithm decouples the primary/secondary flow equations

into subsystems through sequencing and linearization of the subsystems. Each

of the subsystems can then be solved by economical, stable, implicit

procedures.

3.1 Sequentially Decoupled Implicit Algorithm

The solution algorithm for the primary/secondary flow equations is developed by

considering a more general case of a partial differential equation in the form

Mq = 0 (3.2)

M is a matrix operator (nonlinear) whose elements are the coefficients and

differential operators of the individual equations of the system and q is a

vector of dependent variables. Further, the elements of q are assumed to be

ordered and the sequence of equations in M arranged on the basis of an

association between an equation and a dependent variable. This association

between individual equations of the system and dependent variables will be

clarified with development of the algorithm. The matrix M is decomposed and

(3.2) written in the form

(L + D + U)q = 0 (3.3)

where L, D, U are matrix operators containing the lower diagonal, diagonal and

upper diagonal elements of M, respectively. The matrix operators L, D and U

are linearized by the following linearization scheme

n,n+ (n+I n k = 1, . . . (j-l)L : t ij ( q k ) j (3.4)
i ' ' m = j, . • N

where lij are the elements of L and n is the marching coordinate index. The

operators D and U can be linearized in the same manner as L. Equation (3.3)

can be written as a linear, decoupled set of equations

(n ,n+1 Ln n+1 n+I nn+1
(D + L ' ) q + Un  qn = 0 (3.5)
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or

D ,1q+1 = - (L n,n+ q n+ + Un,n+l q ) (3.6)

Equation (3.6) is a decoupled system of equations that can be solved by

inverting the linear diagonal operators in sequence using implicit schemes.

Clearly, the success of the sequentially decoupled algorithm (3.6) depends on

the system of equations (3.2) and the choice of the diagonal matrix operator,

D. The diagonal operator, D, is determined by the association made between

individual equations of the system and dependent variables.

The association of equations with variables is straightforward for the

primary/secondary flow equation; Q with (2.10), 0 with (2.9), p with (2.11),

Up with (2.8), * with (2.7), and E with (2.12). For simplicity, the implicit

operator (Dn 'n + l + Ln n + l ) in (3.5) for the incompressible form of the primary/

secondary flow equations can be written as

(Dn,n+l + Ln,n+lq 
n+l

n+l

dl * *

1v 2 I

s

£31 £32 V2  p (3.7)
s

1 a
0 0 1 d44 u

_x p

00 0 V-2

where d1 j, d44 U-V - Re-IV 2 . The '*' in (3.7) is used to indicate non-zero
s

elements of the explicit operator, Un nl. The vector basis is assumed aligned

with coordinate directions in (3.7). The vector basis introduces more complex

differential operators in individual equations but the implicit operator

retains essentially the same form as (3.7). Although no stability analysis of

(3.6) has been performed, stability of (3.6) for the primary/secondary flow
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equations has been established through extensive numerical computation of

numerous test cases. Further, although the vorticity and vector potential

equations (first two equations in (3.7)) can be uncoupled in (3.7), they are

strongly coupled at a no-slip boundary by boundary conditions. Consequently,

the vorticity and vector potential equations are solved as a coupled subsystem

of equations to avoid stability problems. The following sequentially decoupled

subsystem equations are obtained for the compressible primary/secondary flow

equations

1) vorticity (2.10), vector potential (2.9) for Q, i

2) pressure equation (2.11) for p

3) energy equation (2.12) for E

4) streamwise momentum (2.8) for Up

5) equation of state (2.13) for p (algebraic)

6) scalar potential equation (2.7) for *
The sequence completes the solution of the primary/secondary flow equations for

one streamwise step (n+l) from the solution at the previously computed step (n)

(initial conditions for n=l). Each of the individual subsystem equations can

be solved by a convenient, efficient procedure. Numerical procedures used in

the present work for solving decoupled subsystem equations are described in a

later section.

3.2 Differencing Procedures and Boundary Conditions

The governing equations (2.7)-(2.12) are transformed to a body-fitted

coordinate system in which the equations are discretized. Body-fitted

coordinate transformations suitable for the primary/secondary flow equations

are discussed in (3]. The discretization employs two-point backward

differences for streamwise derivatives and three-point central differences for

trans.erse derivatives. The body-fitted coordinate transformation allows a

variable streamwise step size and concentration of grid points in regions of

expected large gradients. A centered Crank-Nicolson formulation could be used

for streamwise derivatives but the formal accuracy of the scheme would not be

improved because of the first-order accurate linearization scheme (3.4) used to

decouple subsystem equations.
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Implicit boundary conditions are used in all subsystem equations.

Boundary conditions that are not straightforward are no-slip conditions on a

solid boundary and boundary conditions on pressure. These conditions are

described here. The streamwise velocity up is specified as zero in the

streamwise momentum equation (2.8) on a no-slip boundary. The condition

v = w = 0 must be expressed in terms of *, J and 9. The normal component of

the scalar potential velocity is specified as zero by i -V = 0, where i isn € n

the unit normal vector to the boundary. V is specified in terms of 0 to

obtain a Neumann condition for the scalar potential equation (2.7). The normal

component of the vector potential velocity is specified zero by prescribing 4 =

0 on the boundary. The tangential component of the transverse velocity is

specified at the no-slip boundary by

it .[(v, + v,)e2 + (w + w , )e3] = 0 (3.8)

where it is the unit tangent vector to the boundary. Equation (3.8) combined

with equation (2.9) is used to obtain S1 on the boundary in terms of 0 and 4-

This relation for Q, along with prescribing * = 0, provides coupled boundary

conditions for the vector potential (2.9) and vorticity equations (2.10). The

coupled boundary conditions require the equations to be solved as a coupled

subsystem from stability considerations.

Boundary conditions for pressure are obtained by computing the normal

gradient of pressure on the boundary from transverse momentum equations. The

prescription of the normal gradient of pressure in the pressure equation (2.11)

results in a Neumann problem. Solution of the Neumann problem leaves an

undetermined constant in the transverse plane that could, however, be a

function of the streamwise coordinate. Pressure, p, is written as

p = PM (x) + pv (x l , x2 , x3 ) (3.9)

where p. is the undetermined constant of the Neumann problem and Pv is the

solution of the pressure equation. The value of Pm is required in the

solution of the streamwise momentum equation (2.8) in the form of the

streamwise gradient, 2P- . In external flows, Pm can be determined by equating
ax1
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the right-hand side of (3.9) to prescribed pressure at a point in freestream in

each transverse plane. Such a condition is not available in internal flows and

Pm has to be determined to ensure that the integral mass flux relation

f pU idA Q = constant (3.10)

A

is satisfied. For internal flows, P. is adjusted by a secant iteration

during solution of the streamwise momentum equation (2.8) so that integral mass

flux relation (3.10) is satisfied.

Far field boundary conditions for velocity for the submerged body flow

field are specified in terms of freestream conditions and the angle of attack.

The streamwise velocity and vorticity are extrapolated at the outer boundary.

The vector potential component of the transverse velocity field is specified in

terms of the angle of attack (a) as

i2 V sx!ii = U sin (3.11)

Equation (3.11) is integrated along the outer boundary for a specification of

p. The scalar potential component of the transverse velocity is specified in

terms of the normal gradient of the scalar potential

Q. - r. -

= -1- i .1- + + 6x2 6x3  (3.12)
n s 2n n r r. r

J 1 0

where r is the vector from the grid point j to the boundary point under

consideration, ri is the vector from the image of the grid point j to the

boundary point, and r0 is the vector from the origin to the boundary point.

Qj is the source strength obtained from (2.7) as

Q* =V -(Pe 1 ~ve.)il + V.(peklu )i k  (3.13)

The summation in (3.12) is carried out over all grid points in the transverse

plane, extending 2uv around the body.
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3.3 Turbulence Model

The mixing length turbulence model developed by Baldwin and Lomax 110) was

utilized to compute the eddy viscosity. In utilizing the model for the

submerged body flow field, problems were encountered in the computation of the

vorticity function (FMAX). In the region of the lee-side vortex, a second peak

in the vorticity function was found near the center of the vortex. This peak

was of greater value than the first peak found in the boundary layer region of

the flow field. If the second peak was utilized in the model, large eddy

viscosities were computed in the region of the lee-side vortex which is

physically a region of rotational inviscid flow. Large eddy viscosities in the

region of the vortex dissipated the vortex in the computations. To overcome

the problem, the turbulence model was modified to restrict the search for the

peak in the vorticity function to y+ = 2000. Similar modifications to the

mixing length model have been used in the computations of Degani and

Schiff [111 and Panaras and Steger [121.

3.4 Summary

A summary of the procedure used to advance the solution a single

streamwise step to the (n+l) level from previously computed quantities at the

n level follows. Coordinate and vector basis information required to solve the

primary/secondary equations are prescribed input. Governing equations are

assumed to be linearized and discretized as previously described.

(1) Equations (2.9) and (2.10) form a linear coupled system for iP+

and Sjn+l, which is solved as a (2x2) coupled system. For this

purpose, artificial time derivatives are added to each equation and

an iterative block-implicit scheme [9] is used. In prescribing

no-slip boundary conditions, the tangential component (3.8) contains

a contribution from *; this contribution is evaluated using e.

Linearization (3.4) provides that terms involving other unknown

dependent variables are evaluated at the n-level.
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(2) The pressure equation (2.11) is solved for pn+l using an iterative

V

scalar ADI scheme. Updated values of vn + l and wn+ l are available

while other dependent variables are evaluated at the n-level.

(3) The energy equation (2.12) is solved for En4l using a scalar ADI

scheme.

(4a) The streamwise momentum equation (2.8) is solved for un+l using a
p

scalar ADI scheme. The streamwise pressure gradient is evaluated at

the (n+l) level.

(4b) The density pn+l is evaluated algebraically from the equation of

state (2.13)

(5) Finally, the scalar potential equation (2.7) is solved for 'n+l

using an iterative scalar ADI scheme.

4. COMPUTED RESULTS FOR FLOW PAST A SUBMERGED BODY IN DRIFT

The primary focus of the present effort has been to demonstrate the

capability to compute the three-dimensional viscous flow around an unappended

submarine hull in drift, utilizing the generalized primary/secondary flow

equations. Results of the computed flow field around an unappended submarine

hull in drift (20 degrees) are presented here. These results are compared with

the limited experimental data available for this flow case. The Reynolds

number of the flow based on the length of the hull was 1.68x0 7 . Computations

were carried out for one-half of the symmetric flow field on a grid of 99

circumferential points, 70 radial points and 191 streamwise points (1.3210
6

total grid points).

Figure 2 provides a visualization of the roll-up of the lee-side vortex

through particle paths traced in the computed flow field. Particle traces are

started in the upstream boundary layer at four streamwise stations. Figure 3

shows a contour plot of the streamwise velocity at several transverse planes.

Figure 4 shows a similar contour plot of the computed static pressure
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at several transverse planes. Figures 2-4 provide a basis for the description

of the physical processes in the flow around the hull in drift. The cross flow

component of the velocity field, due to drift of the hull, convects low

momentum fluid in the boundary layer on the hull towards the lee side. This is

clearly visible in the trajectories of the particle paths in the upstream flow

(Figure 2). The low momentum fluid on the lee side rolls up into a vortex and

is convected downstream by the streamwise velocity. The upstream static

pressure distribution on the hull (Figure 4) shows a low pressure region (blue)

on top of the hull caused by the acceleration of the cross flow velocity

component. The pressure recovers on the lee side of the body. However, as the

lee side vortex is generated, a low pressure region forms at the center of the

vortex. The low pressure region in the vortex core significantly distorts the

pressure field at the stern. The high pressure (red) region at the nose of the

body is due to the stagnation point at the nose. The stagnation point is also

the source of the streamwise velocity gradients at the nose (Figure 3).

Figures 2 and 3 also show boundary layer fluid being convected away from the

nose, on the lee side, along the symmetry plane. It is not yet clear whether

this aspect of the flow field has been observed in experiments or is related to

the initial velocity profiles assumed in the computations.

Figures 5 and 6 show vector plots of the transverse velocity field at two

streamwise stations (x = 0.8 and 0.95). These plots provide a visualization of

the structure of the lee side vortex. Transverse velocity vectors have been

colored by the static pressure field, providing a relation between the

transverse velocity and pressure fields. The plots clearly show the low

pressure regions at the vortex center and on the hull. The pressure field also

shows the interaction between the pressure field due to the vortex and the body

pressure field. Figure 7 compares the computed transverse velocity field at

x = 0.95 with measurements at x = 1.0. These measurements were provided by

DTRC. The strength of the computed and measured vortices compare well with

each other but the computed vortex is located closer to the body than in the

measurements. The source of discrepancy in the location of the vortex could be

due to modifications adopted in the turbulence model to compute the boundary

layer length scale or due to inadequate resolution of the computed flow field

in the stern region. Some of the discrepancy could also be attributed due to

the different streamwise locations of the measurements and computations. The
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computations were not carried out to x=1.0 due to the computational grid

resolution being inadequate in this region, in the present case. Further, the

measured lee side vortices are asymmetric. Means to include this effect in the

computations were beyond the scope of the present effort.

Figure 8 shows the distribution of the computed axial and side forces on

the hull. The figure shows the distribution of forces due to the pressure

field alone and the distribution due to the total force (pressure and shear).

The viscous shear stress does not alter the distribution of the force but does

change the magnitude of the force slightly. As would be expected, the viscous

shear stress affects the axial force to a greater magnitude than the side

forces. Although the viscous shear stress does not significantly affect the

side forces, the pressure field in itself is significantly altered by the

viscous flow, as compared to potential flow, producing a net side force and

axial force on the hull. The side force distribution on the hull (Figure 8)

shows a positive force distribution at the nose which decreases beyond the

nose. The side force increases again as the lee side vortex is generated. The

side force is negative at the stern. The side force distribution produces a

net positive force on the hull. The axial force distribution shows small

regions of negative drag induced by the pressure field at the nose and stern of

the hull. The axial force distribution produces a net positive drag on the

hull, as would be expected.

5. CONCLUSIONS

The feasibility of computing the three-dimensional high Reynolds number

flow around unappended hulls in drift using the generalized primary/secondary

flow equations and the spatial marching computation procedure has been

demonstrated. Important features of the flow field have been captured in the

computations. The computations compare well, in terms of the vortex strength,

with the limited experimental data available for the flow case. Computed

forces on the hull show expected features. The computation procedure is very

economical considering details of the flow field provided. The procedure

typically requires 20 minutes of CRAY X-MP CPU time for 106 grid points.
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6. FUTURE WORK

Computed flow field results need more detailed validation by comparison

with experimental data to identify any sources of discrepancy in the

computations. Determination of the length scale for use in the mixing length

turbulence model for the three-dimensional viscous flow around the hull needs

to be carefully evaluated. A two-equation turbulence model may be required in

the computations. The computation procedure needs to be extended to include

the effects of appendages on the hull. The spatial marching procedure could

also be extended to include unsteady maneuvers. Such a procedure would still

provide significant computational advantages over solution of the unsteady

Navier-Stokes equations, especially for the long time scales involved in a

maneuver and for low mach number flows. The present procedure could also be

used as a tool to provide insight into the basic physical processes of

asymmetric flows around the hull.
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Figure la. Illustration of Primary Flow Direction.

Figure lb. Vector Decomposition of Transverse Velocity.
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Figure Captions for Color Plates

Figure 2. Particle paths showing lee-side vortex roll-up.

Figure 3. Contour plot of streamwise velocity at several transverse
planes.

Figure 4. Contour plot of static pressure at several transverse planes.

Figure 5. Vector plot of the transverse velocity field colored by static
pressure (x = 0.8).

Figure 6. Vector plot of the transverse velocity field colored by static

pressure (x = 0.95).
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Figure 8. Computed Axial and Side Force Distributions.
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